Homework 10: HashTable

Released Friday
Due Friday 11/04/16 - 11:59pm

Goals:

e Learn how to implement hash table using linked list
e Be able to implement basic hash table features

Prerequisites:

e Understanding of structure of hash table
e Understanding how hash function works

Given:

A skeleton code and a hashkey function will be provided.

Introduction

Every data structure has its own special characteristics. A heap or a priority queue is used when
the minimum or maximum element needs to be fetched in constant time. Similarly a hash table
is used to fetch, add and remove an element in constant time. For some more backround on
hashtables, go to http://visualgo.net/hashtable

Background

Every hash-table stores data in the form of (key, value) combination. Interestingly every key is
unique in a Hash Table but values can repeat which means values can be same for different
keys present in it. Now as we observe in an array to fetch a value we provide the position/index
corresponding to the value in that array. In a Hash Table, instead of an index we use a key to
fetch the value corresponding to that key. Now the entire process is described below:

Every time a key is generated. The key is passed to a hash function. Every hash function has
two parts a Hash code and a Compressor. Hash code is an Integer number (random or
nonrandom), and it is generated by modulo operation. The entire process ensures that for any
key, we get an integer position within the size of the Hash Table to insert the corresponding
value.

So the process is simple, user gives a (key, value) pair set as input and based on the value
generated by hash function an index is generated to where the value corresponding to the
particular key is stored. So whenever we need to fetch a value corresponding to a key that is
just O(1).


http://visualgo.net/hashtable

This picture stops being so rosy and perfect when the concept of hash collision is introduced.
Imagine for different key values same block of hash table is allocated now where do the
previously stored values corresponding to some other previous key go. We certainly can’t
replace it .That will be disastrous! To resolve this issue we will use Separate Chaining
Technique.

Now what we do is make a linked list corresponding to the particular bucket of the Hash Table,
to accommodate all the values corresponding to different keys who map to the same bucket.

D_. key
-
4

i
ddie &

Now there may be a scenario that all the keys get mapped to the same bucket and we have a
linked list of n(size of hash table) size from one single bucket, with all the other buckets empty
and this is the worst case where a hash table acts a linked list and searching is O(n).So what do
we do ?


http://geeksquiz.com/hashing-set-3-open-addressing/

Task

For this task, you will implement a hash table. You must use chaining to handle collision. The
‘table’ field in the hashtable structure is a pointer to an array of ‘hashtable_ent_t’ structure
pointers. Each slot in the hashtable_t ‘table’ array is a pointer to the first node in a chain of
zero or more hashtable_ent_t structures that hold the key-value pairs. We will verify that you
implement chaining. In hashtable.c you will implement the set of functions described in
hashtable.h:

hashtable_t* create_hashtable(int)

void free_hashtable()

int get(hashtable_t*, const char*, double*)

int set(hashtable_t*, const char®, double)

int key_exists(hashtable_t*, const char*)

int remove_key(hashtable t*, const char*)

A detailed description of each of these functions can be found in hashtable.h.

Hash Function

Your hash table will use a hash function to determine the slot in the hash table in which to store
a key-value pair. You must store key-value pairs in the array entry table[hash(key) %
table_len]. You will use the hash() function declared in hashtable.h and provided to you in
compiled form in hash.o. To include the hash() function in your program, hashtable.h must be
#include’ed in your source code files, and you must add hash.o to the list of *.c files being
compiled using gcc.

Chaining

Since multiple key may be mapped to the same hash value, there must be a way of handling
these so called ‘collisions’ in the hash table. For this lab you must use ‘chaining’, where each
slot in the hash table isn’t a single key-value pair, but instead is a linked list, containing zero or
more key-value pairs. The table field in the hash table structure is a pointer to an array of
pointers. If there are not key-value pairs in a given slot, that pointer at table[hash(key) %
table_len] must be NULL to indicate that slot is empty. Otherwise, the pointer value points to
the first element of a linked list of one or more hashtable_ent structures allocated on the heap.
For example, if two key-value pairs map to the same slot in the table, then table[hash(key) %
table_len] would contain a pointer to a hashtable_ent value allocated from the heap containing
the first key and value, while the next field in that hashtable_ent structure would contain a
pointer to a second hashtable_ent structure containing the second key-value pair. Finally, the
second hashtable_ent structure would contain a NULL pointer indicating that there are no
following values.



