
Pre-lab: Function Pointers

Week 15

Introduction to Void Pointers

In C the void pointer is called the General Purpose Pointer. It does not have any data

type associated with it, and can be stored as address of any type of variable. A void

pointer is a C convention for a raw address. The compiler has no idea what type of

object a void Pointer really points to. Sample code for void pointers;

void *_ptr; // declaration of a void pointer

char c_var;
int i_var;
float f_var;

ptr = &c_var; // ptr has address of character data
ptr = &i_var; // ptr has address of integer data
ptr = &f_var; // ptr has address of float data

The three variables above are of the data type character, integer and float, respectively.

When we assign the address of integer to the void pointer, pointer will become an

Integer Pointer. When we assign the address of Character Data type to void pointer it

will become a Character Pointer. Similarly we can assign the address of any data type

to the void pointer. It is capable of storing address of any data type.

To de-reference this void pointer following syntax is to be used;
int _ptri = *((int*)_ptr);

float _ptrf = *((float*)_ptr);

char _ptrc = *((char*)_ptr);

Introduction to Function Pointers

Following is a declaration of a function pointer that takes in two integer parameters and

returns an integer;

int (*myFunction)(int, int);

Below is a function that takes in two integers and returns an int:

int addnum (int a, int b);

You can store the address of addnum to myFunction, as follows:

myFunction = &addnum;

And, then call addnum through the function pointer myFunction by explicitly

dereferencing it using the * operator as shown below;

int result = *myFunction (2, 4);

You can also call the function through the function pointer without dereferencing as

shown below:

int result = myFunction(2,4);

Result will have 6 after the function call is made.

