Valgrind Tutorial

Memory Errors and Valgrind

While dynamic memory is a powerful technique that gives a programmer the ability to create complex
data structures, it can be very prone to memory errors. Valgrind is a useful tool to help track down
memory leaks and other memory related errors.
There are several major types of memory related errors:

Memory Leaks

Invalid Read
e |nvalid Write
e Uninitialized Read
e Use-After-Free (Dangling Pointer)

Memory Leaks

A memory leak occurs when a program continually calls malloc(), but forgets to call free() when it is done

using the memory. Consider the following program that leaks memory:
#include <stdlib.h>

J**
* Example struct
*/

struct mystruct {

int somedata;
int moredata;

1

J**
* This function will Leak memory
*/
int myfunc() {
/* Allocate a struct on the heap for some purpose */
struct mystruct* data = (struct mystruct*)malloc(sizeof(struct mystruct));
data->somedata 4;
data->moredata 5;

/* Ooops, function exiting without freeing and we no longer have a copy of the pointer */

9;
}
int main(int argc, char** argv) {
myfunc();
9;

If we compile the code into a program ‘leak’ and run with valgrind (‘valgrind ./leak’), we get the following
output.

s of leaked memory

-amd&4-Tinux.so)

Here we can see that a block of memory allocated by a call to malloc() at line 16 in leak.c was never
freed before the program terminated and thus is a memory leak.

Invalid Read

An invalid read is when a program read memory outside of valid memory.
Invalid reads commonly occur when working with arrays when an invalid index is used to access the
array. Consider the following program that performs an invalid read past the end of an array:

#include <stdlib.h>
#include <string.h>

Vit
* This function performs an invalid read operation
*/

int badfunc(char *arr, int len) {

// Always remember to check parameters
(arr == NULL || len < 0) {
-1;
}
int sum;
int i;
// The condition should be 1 < len
(i =0; i<=1len; i++) {
sum += arr[i];

sum;

int main(int argc, char** argv) {
// Allocate a buffer for use
char *buffer = (char*)malloc(1024);
memset(buffer, 1, 1024);
badfunc(buffer, 1024);
// Free the buffer now that we are done with it
free(buffer);
9;

Compiling this code into a program named ‘bad_read’ and running it with valgrind via
‘valgrind ./bad_read’ gives the following output:

e e e s s s s

un with:

Invalid Write

Invalid writes can be caused by many different errors, including but not limited to dereferencing a pointer
that was already freed, or by incorrectly indexing past the end of an array. Consider the following
program that writes to invalid memory, causing corruption:

#include <stdlib.h>

/**
* This function performs an invalid write operation
*/
int badfunc(char *arr, int len) {
// Always remember to check parameters
(arr == NULL || len < @) {
_1)
}
int i;
// The condition should be 1 < len, so we write to an element one past the end of the array
(i =09; i <= len; i++) {
arr[i] = 1;

9;

int main(int argc, char** argv) {
// Allocate a buffer for use
char *buffer = (char*)malloc(1024);
// Pass the buffer to a function
badfunc(buffer, 1024);
// Free the buffer now that we are done with it
free(buffer);
9;

While in this trivial case the program will continue to run correctly, any program that performs an invalid
write operation that corrupts memory is liable to crash at a later point in time with no warning. Valgrind
will give the following warning when running the above program with an invalid write:

ght info

amd64-1inux.so)

11
1
1
1
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11

Use-After-Free (Dangling Pointer)

A dangling pointer is a form of invalid write or read. For a dangling pointer to occur, memory is allocated
and used correctly before finally being free()ed as it should. The dangling pointer error is when an access
is made to the memory that already been freed. It's referred to as a dangling pointer because you are
using a pointer to memory that is no longer allocated (hence dangling) for use. The biggest problem with
dangling pointers occurs when the memory that a dangling pointer points to is allocated again for a
different purpose, then it is written to by another piece of code, and finally the dangling pointer is
dereferenced. In the event you read a dereferenced dangling pointer, you’ll read bad data, and in the
case of a write to a dereferenced dangling pointer, you'll overwrite and corrupt the memory that was
being used by the other piece of code. The following program is an example of a dangling pointer:

#include <stdlib.h>

char *myfunc() {
char* mydata = (char*)malloc(100);
/* Make a copy of the pointer */
char* cpy = mydata;
(mydata == NULL) NULL;
/* Do work with mydata */
free(mydata);
/* Do more work, forget that the memory pointed to by BOTH mydata AND cpy has been freed */

cpy;

int main(int argc, char** argv) {

char* data = myfunc();
(data == NULL) 1;
/* This is a dangling pointer, the memory pointed to by data was freed inside myfunc */
data[1e] = "\@"';
0;

Uninitialized Memory

Another type of memory is when you read from uninitialized memory. When memory is allocated, either
via malloc() or on the stack via a function call, the values in the area of memory are undefined, it can
contain garbage values. Consider the following program that accesses uninitialized memory:

#tinclude <stdio.h>
#include <stdlib.h>

struct mystruct {
int data;
char moredata;

1

int badfunc(struct mystruct *s) {
// Always check pointer parameters
(s == NULL) {
_1)
¥

// s points to uninitialized memory, so this is an error
printf("s->data = %d\n", s->data);

9;
}

int main(int argc, char** argv) {
struct mystruct s;

// Forgot to 1initialize s before passing the address
badfunc(&s);

0;

The following is an example of the output of a program compiled from the above code:

Note how the value of s->data is random. This value can change each time the program is run based on
what value happens to exist in memory.

Below is an example of Valgrind output indicating that an uninitialized variable is being used:

Juninitialized read
k, a memory error detector
Copyright (C) 2-2013, and GNU GPL'd, by Julian Seward et al.
55== UUsing Valgrind-3.10.1 and LibVEX; rerun with -h for copyright info
55== Command: ./uninitialized read

= Conditional jump or move depends on uninitialised value(s)
at Ox4EVDFEC: vfprintf (in /l1ib64/1libc-2.21.s0)
;) Ox4EBS0A printf (in /1ib64/1ibc-2.21.
A(5: badfunc (uninitialized read.c
271 main (uninitialized read.c:25)
Ise of uninitialised value of size 8
@ _itoa word (in /l1ibB84/1libc-2.21.s0)
viprintft (in /l1ib64/1ibc-2.21.s0)
printf (in /1ib64/1ibc-2.21.s0)
5: badfunc (uninitialized read.c:16)
270 main (uninitialized read.c:25)
jump or move depends on uninitialised v
5: itoa word (in /lib64/1libc-2.21.s0)
viprintf (in /1ib64/1ibc-2.21.s50)
printf (in /1ib64/1ibc-2.21.s0)
FE: badfunc (uninitialized read.c:16
7 main (uninitialized_ read.c:25)
Conditional jump or move depends on uninitiglise
at Ox4EVE34B: vfprintf (in /1ib64/1ibc-2.21.s0)
y Qx4 C printf (in /1ib64/1ibc-2.21.s0)
padfunc (uninitialized read.c:16)
7 main (uninitialized_ read.c:25)

jump or move depends on uninitiglise
viprintf (in /1ib64/1ibc-2.21)
printf (in /1ib64/1ibc-2.21.

FE: badfunc (uninitialized read.c

7 main (uninitialized read.c:25)

= Conditional jump or move depends on uninitialise
at Ox4EVELS9: vfprintf (in /1ib64/1ibc-2.21.s0)

4 printf (in /1ib64/1ibc-2.21.s

: badfunc (uninitialized read.c:

7: main (uninitialized read.c:25)

HEAP SUMMARY :
in use at exit: @ bytes in O 5
total heap usage: 0 allocs, O frees, 0O bytes allocated

ALl heap blocks were freed -- no leaks are possible

For counts of detected and suppressed errors, rerun with: -v
Use --track-origins=yes to see where uninitialised wvalues come from

It is important to understand, Valgrind can only tell you if a program execution has a memory leak, not
the program itself under every possible input. Students who do not thoroughly test all of their functions
may lose points due to memory leaks simply because they never tested them enough.

