
Lab 12 Prelab: File I/O
One of the most important things in any programming language is the ability to read and alter
files in the file system. While C does not really go out of its way to accommodate this sort of
thing, UNIX and the POSIX standard do.

fopen()
To Open a File In C, one needs to call fopen like so:

FILE* myfile = fopen(“/path/to/file/goes/here”, “r+”);

This will make a file pointer to the file which remembers our location in the file as well. The “r+”
means we intend to both read and write this file. If we only want to read, we can omit the “+” in
order to prevent accidental overwrites and speed things up. If we want to read the whole file
into memory right now, we can create a buffer via malloc and then call fread():

int* buff = malloc(sizeof(int) * 1000);
//assuming this file is 1000 ints long
fread(buff, sizeof(int), 1000, myfile);
//This will place 1000 things of size sizeof(int) into the
//buffer buff from the file.

Similarly, if we want to write our buffer back to our file, there is a function fwrite(). First though,
we will need to call rewind() to set the file pointer to the start of the file again, since it has
changed when we did our fread(), and is now 1000 ints into the file.

rewind(myfile);
fwrite(buff, sizeof(int), 1000, myfile);

If we want to close this file, we can call fclose(). This is very important if we have written
something to the file, as C will often create its own internal buffer to store changes to files, and
fclose() will make sure those buffers get written to disk accordingly.

fclose(myfile);

fread() is extreamly flexable and can read anything, even structs and strange data types. All you
need to do is make sure you use sizeof() when setting the size of each element in your fread()
call, and fread() will copy it into memory.

