
Valgrind Tutorial 

Memory Errors and Valgrind 

While dynamic memory is a powerful technique that gives a programmer the ability to create complex 

data structures, it can be very prone to memory errors. Valgrind is a useful tool to help track down 

memory leaks and other memory related errors. 

There are several major types of memory related errors: 

● Memory Leaks 

● Invalid Read 

● Invalid Write 

● Uninitialized Read 

● Use-After-Free (Dangling Pointer) 

Memory Leaks 

A memory leak occurs when a program continually calls malloc(), but forgets to call free() when it is done 

using the memory. Consider the following program that leaks memory: 
1. #include <stdlib.h> 
2.   
3.  /** 
4.   * Example struct 
5.   */ 
6.  struct mystruct { 
7.      int somedata; 
8.      int moredata; 
9.  };       
10.   
11.  /** 
12.   * This function will leak memory 
13.   */ 
14.  int myfunc() { 
15.      /* Allocate a struct on the heap for some purpose */ 
16.      struct mystruct* data = (struct mystruct*)malloc(sizeof(struct mystruct)); 
17.      data->somedata = 4; 
18.      data->moredata = 5; 
19.   
20.      /* Ooops, function exiting without freeing and we no longer have a copy of the pointer */ 
21.      return 0; 
22.  }   
23.       
24.  int main(int argc, char** argv) { 
25.      myfunc();   
26.      return 0; 
27.  } 

 
 
If we compile the code into a program ‘leak’ and run with valgrind (‘valgrind ./leak’), we get the following 

output.  



 
 

We can re-run valgrind with the ‘--leak-check=full’ option to see more detailed information: 

 

Here we can see that a block of memory allocated by a call to malloc() at line 16 in leak.c was never 

freed before the program terminated and thus is a memory leak. 

  



 

Invalid Read 

An invalid read is when a program read memory outside of valid memory. 

Invalid reads commonly occur when working with arrays when an invalid index is used to access the 

array. Consider the following program that performs an invalid read past the end of an array:  

 
1. #include <stdlib.h> 
2. #include <string.h> 
3.   
4.  /** 
5.   * This function performs an invalid read operation 
6.   */ 
7.  int badfunc(char *arr, int len) { 
8.      // Always remember to check parameters 
9.      if (arr == NULL || len < 0) { 
10.          return -1; 
11.      } 
12.      int sum; 
13.      int i; 
14.      // The condition should be i < len 
15.      for (i = 0; i <= len; i++) { 
16.          sum += arr[i]; 
17.      } 
18.      return sum; 
19.  } 
20.   
21.  int main(int argc, char** argv) { 
22.      // Allocate a buffer for use 
23.      char *buffer = (char*)malloc(1024); 
24.      memset(buffer, 1, 1024); 
25.      badfunc(buffer, 1024); 
26.      // Free the buffer now that we are done with it 
27.      free(buffer); 
28.      return 0; 
29.  } 

 

Compiling this code into a program named ‘bad_read’ and running it with valgrind via 

‘valgrind ./bad_read’ gives the following output: 

 



Invalid Write 

Invalid writes can be caused by many different errors, including but not limited to dereferencing a pointer 

that was already freed, or by incorrectly indexing past the end of an array. Consider the following 

program that writes to invalid memory, causing corruption: 

 
1. #include <stdlib.h> 
2.   
3.  /** 
4.   * This function performs an invalid write operation 
5.   */ 
6.  int badfunc(char *arr, int len) { 
7.      // Always remember to check parameters 
8.      if (arr == NULL || len < 0) { 
9.          return -1; 
10.      } 
11.      int i; 
12.      // The condition should be i < len, so we write to an element one past the end of the array 
13.      for (i = 0; i <= len; i++) { 
14.          arr[i] = 1; 
15.      } 
16.      return 0; 
17.  }   
18.       
19.  int main(int argc, char** argv) { 
20.      // Allocate a buffer for use 
21.      char *buffer = (char*)malloc(1024); 
22.      // Pass the buffer to a function 
23.      badfunc(buffer, 1024); 
24.      // Free the buffer now that we are done with it 
25.      free(buffer); 
26.      return 0; 
27.  } 

 

While in this trivial case the program will continue to run correctly, any program that performs an invalid 

write operation that corrupts memory is liable to crash at a later point in time with no warning. Valgrind 

will give the following warning when running the above program with an invalid write: 

 

 
 



Use-After-Free (Dangling Pointer) 

A dangling pointer is a form of invalid write or read. For a dangling pointer to occur, memory is allocated 

and used correctly before finally being free()ed as it should. The dangling pointer error is when an access 

is made to the memory that already been freed. It’s referred to as a dangling pointer because you are 

using a pointer to memory that is no longer allocated (hence dangling) for use. The biggest problem with 

dangling pointers occurs when the memory that a dangling pointer points to is allocated again for a 

different purpose, then it is written to by another piece of code, and finally the dangling pointer is 

dereferenced. In the event you read a dereferenced dangling pointer, you’ll read bad data, and in the 

case of a write to a dereferenced dangling pointer, you’ll overwrite and corrupt the memory that was 

being used by the other piece of code. The following program is an example of a dangling pointer: 

 
1. #include <stdlib.h> 
2.   
3. char *myfunc() { 
4.     char* mydata = (char*)malloc(100); 
5.     /* Make a copy of the pointer */ 
6.     char* cpy = mydata; 
7.     if (mydata == NULL) return NULL; 
8.     /* Do work with mydata */ 
9.     free(mydata); 
10.     /* Do more work, forget that the memory pointed to by BOTH mydata AND cpy has been freed */ 
11.     return cpy; 
12. } 
13.   
14. int main(int argc, char** argv) { 
15.     
16.     char* data = myfunc(); 
17.     if (data == NULL) return 1; 
18.     /* This is a dangling pointer, the memory pointed to by data was freed inside myfunc */ 
19.     data[10] = '\0'; 
20.     return 0; 
21. } 

 

Uninitialized Memory 

Another type of memory is when you read from uninitialized memory. When memory is allocated, either 

via malloc() or on the stack via a function call, the values in the area of memory are undefined, it can 

contain garbage values. Consider the following program that accesses uninitialized memory: 

 
1. #include <stdio.h> 
2.  #include <stdlib.h> 
3.   
4.  struct mystruct { 
5.      int data; 
6.      char moredata; 
7.  }; 
8.   
9.  int badfunc(struct mystruct *s) { 
10.      // Always check pointer parameters 
11.      if (s == NULL) { 
12.          return -1; 
13.      } 
14.   
15.      // s points to uninitialized memory, so this is an error 
16.      printf("s->data = %d\n", s->data); 



17.   
18.      return 0; 
19.  } 
20.   
21.  int main(int argc, char** argv) { 
22.      struct mystruct s; 
23.       
24.      // Forgot to initialize s before passing the address 
25.      badfunc(&s); 
26.   
27.      return 0; 
28.  } 

 

The following is an example of the output of a program compiled from the above code: 

 
Note how the value of s->data is random. This value can change each time the program is run based on 

what value happens to exist in memory.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Below is an example of Valgrind output indicating that an uninitialized variable is being used: 

 



 

Note: 

It is important to understand, Valgrind can only tell you if a program execution has a memory leak, not 

the program itself under every possible input. Students who do not thoroughly test all of their functions 

may lose points due to memory leaks simply because they never tested them enough. 


