Homework 2: Debugging Functions

Released Friday 9/26/16 - 5:00pm
Due Friday 9/9/16 - 11:59pm

Goals:

e Further develop your debugging skills, and knowledge of GDB

Task: Debugging Functions

Navigate to Vocareum and select HW2, you will find a file called “functions.c”.
This file contains many different functions with different bugs in each. Included in the file
is a description of each function and a sample output for each. Your task is to fix all of
the bugs so that the functions all work properly.

Given:
functions.c - File containing functions with bugs.
functions.h - header file for functions.c
testing_tool.c - helps to check if the program works properly
testing_tool.org:
tool you may use to see how the functions should run if done properly
Makefile:
compiles source files to the executable files as testing_tool and test_functions



Arrays refresher:

How to initialize an array in C

int array[5]; > Initializes an integer array of size 5
intarray[]={7,6,2,1}; > Initializes an integer array of size 4
char string[7]; > Initializes a char array of size 7
char string[] = “Hello\n”; > Initializes a char array of size 7

=> Note: Remember that all strings in C end with
a null terminator, ‘\0’

How to access values

int array[] = {86, 3, 7, 12};
int x = array[2]; -----------------mm-mmmmoe > x now stores the value 7;

char string[] = “barrage”

char c = string[6]; ----------------------m---- > c now stores ‘e’
c = string[7]; -----------------m-mmmm oo > ¢ now stores ‘\0’
Steps:

1. Open “functions.c” and read through the descriptions of each function

2. Run make to compile testing_tool.c and functions.c to the executable file testing_tool

3. Use gdb to debug the executable program find the errors in each of the functions and fix
the bugs you found by modifying “functions.c”

-> Note: Before looking at the functions, think about refreshing yourself on some of the
binary operators such as “&, |, >>, <<”. You will not be allowed to add any other libraries
from the C standard library to the file.

B

Use “testing_tool” and “testing_tool.org” to test the functions.
-> Note: Remember to test all functions carefully and think about all possible cases. There
is at least one bug per function.



On Test bubbleSort(), if you find the numbers to be doing correctly, try with a larger array
size.

Testing_tool Demo:

In order to test that your functions are working properly, you can use the
“testing_tool’ file to test your functions with inputs. Type “make” to compile your
functions along with “testing_tool.c”. You may then type “./testing_tool” to run the
program. You will be presented with a menu of all the different functions to test as shown
below. Pick a function to test, and the program will ask you to enter inputs to the

function.

Makefile functions.c functions.h testing tool testing toocl.c testing tool.org
podd-5 183 § ./ /testing_tool
Task 3 Function Tester

Flease pick one of the options
Test mystrleni)

Test mystropy i)

Test mystrompe ()

Test reverseString ()

Test stringTolUpper ()

Test countBits ()

Test isSet ()

Test factorialfercesi)
Test isPalindroms ()

10. Test checklnagrami)

11. Exit program

1

Please Enter A String: Hello world
mystrlen ("Hello world") = 11
Press <enter=>

1. Test mystrlen()

2 Test mystrepy ()

3 Test mystromp ()

4., Test reverseStringl()

a3

(5]

fy

=] 0on s B =

oo

Test stringTolUpper ()
Test countBits()

Test is8et ()

Test factorialZercesi)
Test isPalindroms ()
10. Test checkinagrami)
11. Exit program



You may use gdb along with testing_tool.c. Type “gdb testing_tool’ to open up gdb.
Set a breakpoint using “b” or “break” at whichever function you would like to test. You
can then run through the function line by line.

podd-5 191 § gdb testing_tool

U gdb (Gentoo 7.10.1 wvanilla) 7.10.1

Copyright (C) 2015 Free Software Foundaticon, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.crg/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.

This GDEB was configured as "x86_G4-pe-linux-gnu".

Tvpe "show configuraticon" for configuraticon details.

For bug reporting instructicns, please see:
<https://bugs.gentoc.org/>.

Find the GDE manual and other documentaticn resources cnline at:
<http://www.gnu.crg/software,/gdb/documentaticn/>.

For help, type "help".

Type "apropos word" to search for commands related to "word". ..
Reading symbols from testing_tool...done.

(gdb) b test _mystrlen

Breakpoint 1 at 0x40082e: file testing_toocl.c, line 11.

(gdb) ¥

Starting program: /u/data/us s G, - == ino ool
Task 3 Function Tester

Please pick one of the opticns

Test mystrlen ()

Test mystrcpy ()

Test mystrcop ()

Test reverseString ()

Test stringTolpper ()

Test countBits()

Test is8et ()

Test factorialZeroes()

Test isPalindrome ()

Test checklAnagrami)

Exit program

W0 =] 0o M L b

== e
=T



Breakpoint 1, test_mystrlen () at testing toocl.c:11

11 vold test_mystrleni) {

igdb) n

12 printf ("Please Enter & String: "):
igdb) n

13 char * 8 = NULL;

igdb) n

14 zize t len = 0;

igdb) n

15 int length = getline (&s, &len, stdin);
igdb) n

Please Enter A String: Hello world

16 s[length-1] = 'Z0';

igdb) n

17 int 1 = mystrlen(s):;

igdb) =

mystrlen (5=0x604010 "Hello world'") at functicns.c:17
17 int 1 = 1;

igdb) n

18 while (s[i] != '*0') |

igdb) n

13 i++;

igdb) n

18 while (s[i]l != '\0'}) {

igdb) b 20

Breakpoint 2 at 0x401206: file functions.c, line 20.
igdb) c

Continuing.

Breakpoint 2, mystrlen (5=0x604010 "Hello world'") at functions.c:21
21 return i;

igdb) g

A debugging sessicn is active.

Inferior 1 [process 18233] will be killed.

Quit anyway? (¥ or n) ¥
podd-5 192 & N

Submission:
Make edits to function.c to make it run without any errors, and submit. The
Vocareum Terminal will be activated for this assignment. You can either work on Vocareum or
offline, but to submit function.c must be in your work dir.



