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1. A professor wants to know if students are getting enough sleep. Each day, the professor 
observes whether the students sleep in class, and whether they have red eyes. The 
professor has the following domain theory:
● The prior probability of getting enough sleep, with no observations, is 0.6.
● The probability of getting enough sleep on night t is 0.7 given that the student got 

enough sleep the previous night, and 0.4 if not.
● The probability of having red eyes is 0.3 if the student got enough sleep, and 0.6 if 

not.
● The probability of sleeping in class is 0.2 if the student got enough sleep, and 0.4 if 

not.
Formulate this information as a dynamic Bayesian network that the professor could use to
filter or predict from a sequence of observations. Then reformulate it as a hidden Markov 
model that has only a single observation variable. Give the complete probability tables for
the model.

Dynamic Bayesian Network:
Let there be 3 variables; St for getting enough sleep, Et for having red eyes, and Ct for 
sleeping in class. 

To alter this DBN into an HMM, merge red eyes and sleeping into a single variable with 
four values by multiplying their probabilities together.
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2. Consider a student who has the choice to buy or not buy a textbook for a course. We’ll 
model this as a decision problem with one Boolean decision node, B, indicating whether 
the agent chooses to buy the book, and two Boolean chance nodes, M, indicating 
whether the student has mastered the material in the book, and P, indicating whether the 
student passes the course. Of course, there is also a utility node, U. A certain student, 
Sam, has an additive utility function: 0 for not buying the book and -$100 for buying it; 
and $2000 for passing the course and 0 for not passing. Sam’s conditional probability 
estimates are as follows:

P (p | b, m) = 0.8
P (m | b) = 0.8
P (p | b, ¬m) = 0.4
P (m | ¬b) = 0.6
P (p | ¬b, m) = 0.7
P (p | ¬b, ¬m) = 0.4

You might think that P would be independent of B given M, But this course has an open
book final—so having the book helps.
a. Draw the decision network for this problem.

b. Compute the expected utility of buying the book and of not buying it.
P (p |b )=0.8∗0.8+0.4∗0.2=0.72
P (p |¬b )=0.7∗0.6+0.4∗0.4=0.58
EU [b ]=0.72(2000−100)+(1−0.72)(−100)=1340
EU [¬b ]=0.58(2000−100)+(1−0.58)(−100)=1060
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Sam’s expected utility of buying the book is $1340, while not buying it yields 
$1060.

c. What should Sam do?
Sam should buy the book because it offers the highest utility.

3. Consider an image classification problem. Suppose an algorithm first splits each image 
into n = 4 blocks (the blocks are non-overlapping and each block is at the same location 
and of constant size across all images)and computes some scalar feature value for each 
of the blocks (e.g., average intensity of the pixels within the block). Suppose that this 
feature is discrete and can take m = 10 values. The classification function classifies an 
image as 1 whenever each of the n feature values lies within some interval that is specific 
to this feature (i.e., the value of the first feature is between a1 and b1, the value of the 
second feature is between a2 and b2, and so on), and 0 otherwise. We would like to learn 
these intervals (a and b values for each interval) automatically based on a training set of 
images. All the other parameters such as locations and sizes of the blocks are not being 
learned. The following questions are helpful in understanding the requirements on the 
size of the training set.
a. What is the size of the hypothesis space H? Assume that only intervals with ai <= bi 

are considered for learning.
When given a value a i , the values of b i  may be anywhere from a i  to
m , meaning there are m– a i+1  values. The quantity of possible intervals is 

then m+(m−1)+(m−2)+⋯+1=
m (m+1)

      2 .

The problem states there are n=4  features, so then the size of the hypothesis 
space is (m (m+1)

      2 )
n
=554

=9150625 .

b. Assuming noiseless data and that the function we are trying to learn is capable of 
perfect classification, give an upper bound on the size of the training set required to 
be sure with 99% probability that the learned function will have true error rate of at 
most 5%.

R≥
0.69
  ϵ (log(9150625)+log(

1
δ

))=410.82

c. Compare |H| (the answer to question a) and the required training dataset size R (the 
answer to question b). Why does R not seem to be very affected by the number of 
possible hypotheses? What parameter makes R increase quickly and why?

The parameter ϵ  effects R the most in comparison to the number of hypotheses
because the hypotheses are logarithmic. This makes sense because the smaller 
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the error you desire, the much larger your dataset must become. Separately from 
how many hypotheses we have, a large training set which has been learned will 
likely classify independent test points consistently.

4. Two statisticians go to the doctor and are both given the same prognosis: A 40% chance 
that the problem is the deadly disease A, and a 60% chance of the fatal disease B. 
Fortunately, there are anti-A and anti-B drugs that are inexpensive, 100% effective, and 
free of side-effects. The statisticians have the choice of taking one drug, both, or neither. 
What will the first statistician (an avid Bayesian) do? How about the second statistician, 
who always uses the maximum likelihood hypothesis? The doctor does some research 
and discovers that disease B actually comes in two versions, dextro-B and levo-B, which 
are equally likely and equally treatable by the anti-B drug. Now that there are three 
hypotheses, what will the two statisticians do?

The statistician which is an avid Bayesian would opt to take both anti-A and anti-B
drugs. The statistician who always uses maxmimum likelihood hypothesis would 
only take the anti-B drug.
If there are two strains of disease B, the Bayesian would still opt to take both the 
anti-A and anti-B drugs, while the other statistician who prefers maximum 
likelihood hypothesis would change to only taking the anti-A drug.


